Wednesday, July 4, 2018

NO RAM AVAILABLE IN LINUX !!

source

What's going on?

Linux is borrowing unused memory for disk caching. This makes it looks like you are low on memory, but you are not! Everything is fine!

Why is it doing this?

Disk caching makes the system much faster and more responsive! There are no downsides, except for confusing newbies. It does not take memory away from applications in any way, ever!

What if I want to run more applications?

If your applications want more memory, they just take back a chunk that the disk cache borrowed. Disk cache can always be given back to applications immediately! You are not low on ram!

Do I need more swap?

No, disk caching only borrows the ram that applications don't currently want. It will not use swap. If applications want more memory, they just take it back from the disk cache. They will not start swapping.

How do I stop Linux from doing this?

You can't disable disk caching. The only reason anyone ever wants to disable disk caching is because they think it takes memory away from their applications, which it doesn't! Disk cache makes applications load faster and run smoother, but it NEVER EVER takes memory away from them! Therefore, there's absolutely no reason to disable it!

Why does top and free say all my ram is used if it isn't?

This is just a difference in terminology. Both you and Linux agree that memory taken by applications is "used", while memory that isn't used for anything is "free".
But how do you count memory that is currently used for something, but can still be made available to applications?
You might count that memory as "free" and/or "available". Linux instead counts it as "used", but also "available":
Memory that isYou'd call itLinux calls it
used by applicationsUsedUsed
used, but can be made availableFree (or Available)Used (and Available)
not used for anythingFreeFree
This "something" is (roughly) what top and free calls "buffers" and "cached". Since your and Linux's terminology differs, you might think you are low on ram when you're not.

How do I see how much free ram I really have?

To see how much ram your applications could use without swapping, run free -m and look at the "available" column:
$ free -m
              total        used        free      shared  buff/cache   available
Mem:           1504        1491          13           0         855      792
Swap:          2047           6        2041

(On installations from before 2016, look at "free" column in the "-/+ buffers/cache" row instead.)
This is your answer in megabytes. If you just naively look at "used" and "free", you'll think your ram is 99% full when it's really just 47%!
For a more detailed and technical description of what Linux counts as "available", see the commit that added the field.

When should I start to worry?

healthy Linux system with more than enough memory will, after running for a while, show the following expected and harmless behavior:
  • free memory is close to 0
  • used memory is close to total
  • available memory (or "free + buffers/cache") has enough room (let's say, 20%+ of total)
  • swap used does not change
Warning signs of a genuine low memory situation that you may want to look into:
  • available memory (or "free + buffers/cache") is close to zero
  • swap used increases or fluctuates
  • dmesg | grep oom-killer shows the OutOfMemory-killer at work

How can I verify these things?

See this page for more details and how you can experiment with disk cache to show the effects described here. Few things make you appreciate disk caching more than measuring an order-of-magnitude speedup on your own hardware!

Write Back VS Write THROUGH


Write back is a storage method in which data is written into the cache every time a change occurs, but is written into the corresponding location in main memory only at specified intervals or under certain conditions.
When a data location is updated in write back mode, the data in cache is called fresh, and the corresponding data in main memory, which no longer matches the data in cache, is called stale. If a request for stale data in main memory arrives from another application program, the cache controller updates the data in main memory before the application accesses it.
Write back optimizes the system speed because it takes less time to write data into cache alone, as compared with writing the same data into both cache and main memory. However, this speed comes with the risk of data loss in case of a crash or other adverse event.
Write back is the preferred method of data storage in applications where occasional data loss events can be tolerated. In more critical applications such as banking and medical device control, an alternative method called write through practically eliminates the risk of data loss because every update gets written into both the main memory and the cache. In write through mode, the main memory data always stays fresh.

Tuesday, July 3, 2018

What is the meaning of %iowait as reported by utilities such as sar or top ?

source

Environment

  • Red Hat Enterprise Linux 4
  • Red Hat Enterprise Linux 5
  • Red Hat Enterprise Linux 6
  • Red Hat Enterprise Linux 7

Issue

  • What is the meaning of %iowait as reported by utilities such as sar or top ?

Resolution

  • Following is the definition taken from the sar manpage :
%iowait
           Percentage of time that the CPU or CPUs were idle during which the system had an outstanding disk I/O request.
  • So, %iowait means that from the CPU point of view, no tasks were runnable, but at least one i/o was in progress. iowait is simply a form of idle time when nothing could be scheduled. The value may or may not be useful in indicating a performance problem, but it does tell us that the system is idle and could have taken more work.

Comments

  • A CPU can be in one of four states :  user, sys, idle or iowait. Tools such as vmstat, iostat, sar, etc. print out these four states as a percentage. The kernel maintains this information using counters for each of the states and more. On each clock interrupt, the kernel checks the CPU state and increaments the appropriate counter. You can check the counters in /proc/stat.

Linux Performance Monitoring and Tuning


source
TOP Command
System Load

Linux system administrators should be proficient in Linux performance monitoring and tuning. This article gives a high level overview on how we should approach performance monitoring and tuning in Linux, and the various subsystems (and performance metrics) that needs to be monitored.
To identify system bottlenecks and come up with solutions to fix it, you should understand how various components of Linux works. For example, how the kernel gives preference to one Linux process over others using nice values, how I/O interrupts are handled, how the memory management works, how the Linux file system works, how the network layer is implemented in Linux, etc.,
Please note that understanding how various components (or subsystems) works is not the same as knowing what command to execute to get certain output. For example, you might know that “uptime” or “top” command gives the “load average”. But, if you don’t know what it means, and how the CPU (or process) subsystem works, you might not be able to understand it properly. Understanding the subsystems is an on-going task, which you’ll be constantly learning all the time.
On a very high level, following are the four subsystems that needs to be monitored.
  • CPU
  • Memory
  • I/O
  • Network

1. CPU

You should understand the four critical performance metrics for CPU — context switch, run queue, cpu utilization, and load average.

Context Switch

  • When CPU switches from one process (or thread) to another, it is called as context switch.
  • When a process switch happens, kernel stores the current state of the CPU (of a process or thread) in the memory.
  • Kernel also retrieves the previously stored state (of a process or thread) from the memory and puts it in the CPU.
  • Context switching is very essential for multitasking of the CPU.
  • However, a higher level of context switching can cause performance issues.

Run Queue

  • Run queue indicates the total number of active processes in the current queue for CPU.
  • When CPU is ready to execute a process, it picks it up from the run queue based on the priority of the process.
  • Please note that processes that are in sleep state, or i/o wait state are not in the run queue.
  • So, a higher number of processes in the run queue can cause performance issues.

Cpu Utilization

  • This indicates how much of the CPU is currently getting used.
  • This is fairly straight forward, and you can view the CPU utilization from the top command.
  • 100% CPU utilization means the system is fully loaded.
  • So, a higher %age of CPU utilization will cause performance issues.

Load Average

  • This indicates the average CPU load over a specific time period.
  • On Linux, load average is displayed for the last 1 minute, 5 minutes, and 15 minutes. This is helpful to see whether the overall load on the system is going up or down.
  • For example, a load average of “0.75 1.70 2.10” indicates that the load on the system is coming down. 0.75 is the load average in the last 1 minute. 1.70 is the load average in the last 5 minutes. 2.10 is the load average in the last 15 minutes.
  • Please note that this load average is calculated by combining both the total number of process in the queue, and the total number of processes in the uninterruptable task status.

2. Network

  • A good understanding of TCP/IP concepts is helpful while analyzing any network issues. We’ll discuss more about this in future articles.
  • For network interfaces, you should monitor total number of packets (and bytes) received/sent through the interface, number of packets dropped, etc.,

3. I/O

  • I/O wait is the amount of time CPU is waiting for I/O. If you see consistent high i/o wait on you system, it indicates a problem in the disk subsystem.
  • You should also monitor reads/second, and writes/second. This is measured in blocks. i.e number of blocks read/write per second. These are also referred as bi and bo (block in and block out).
  • tps indicates total transactions per seconds, which is sum of rtps (read transactions per second) and wtps (write transactions per seconds).

4. Memory

  • As you know, RAM is your physical memory. If you have 4GB RAM installed on your system, you have 4GB of physical memory.
  • Virtual memory = Swap space available on the disk + Physical memory. The virtual memory contains both user space and kernel space.
  • Using either 32-bit or 64-bit system makes a big difference in determining how much memory a process can utilize.
  • On a 32-bit system a process can only access a maximum of 4GB virtual memory. On a 64-bit system there is no such limitation.
  • The unused RAM will be used as file system cache by the kernel.
  • The Linux system will swap when it needs more memory. i.e when it needs more memory than the physical memory. When it swaps, it writes the least used memory pages from the physical memory to the swap space on the disk.
  • Lot of swapping can cause performance issues, as the disk is much slower than the physical memory, and it takes time to swap the memory pages from RAM to disk.
All of the above 4 subsystems are interrelated. Just because you see a high reads/second, or writes/second, or I/O wait doesn’t mean the issue is there with the I/O sub-system. It also depends on what the application is doing. In most cases, the performance issue might be caused by the application that is running on the Linux system.
Remember the 80/20 rule — 80% of the performance improvement comes from tuning the application, and the rest 20% comes from tuning the infrastructure components.
There are various tools available to monitor Linux system performance. For example: top, free, ps, iostat, vmstat, mpstat, sar, tcpump, netstat, iozone, etc., We’ll be discussing more about these tools and how to use them in the upcoming articles in this series.
Following is the 4 step approach to identify and solve a performance issue.
  • Step 1 – Understand (and reproduce) the problem: Half of the problem is solved when you clearly understand what the problem is. Before trying to solve the performance issue, first work on clearly defining the problem. The more time you spend on understanding and defining the problem will give you enough details to look for the answers in the right place. If possible, try to reproduce the problem, or at least simulate a situation that you think closely resembles the problem. This will later help you to validate the solution you come up to fix the performance issue.
  • Step 2 – Monitor and collect data: After defining the problem clearly, monitor the system and try to collect as much data as possible on various subsystems. Based on this data, come up list of potential issues.
  • Step 3 – Eliminate and narrow down issues: After having a list of potential issues, dive into each one of them and eliminate any non issues. Narrow it down further to see whether it is an application issue, or an infrastructure issue. Drill down further and narrow it down to a specific component. For example, if it is an infrastructure issue, narrow it down and identify the subsystem that is causing the issue. If it is an I/O subsystem issue, narrow it down to a specific partition, or raid group, or LUN, or disk. Basically, keep drilling down until you put your finger on the root cause of the issue.
  • Step 4 – One change at a time: Once you’ve narrowed down to a small list of potential issues, don’t try to make multiple changes at one time. If you make multiple changes, you wouldn’t know which one fixed the original issue. Multiple changes at one time might also cause new issues, which you’ll be chasing after instead of fixing the original issue. So, make one change at a time, and see if it fixes the original problem.
In the upcoming articles of the performance series, we’ll discuss more about how to monitor and address performance issues on CPU, Memory, I/O and Network subsystem using various Linux performance monitoring tools.

Note : dstat command use for overall performance at a glance
Youtube:uptime,top,mpstat,iostat,vmstat ,free,ping,Dstat   >>  mpstat,iostat

What is Swappiness?

source

What is Swappiness?
Most of Linux users that have installed a distribution before, must have noticed the existence of the “swap space” during the partitioning phase (it is usually found as /sda5). This is a dedicated space in your hard drive that is usually set to at least twice the capacity of your RAM, and along with it constitutes the total virtual memory of your system. From time to time, the Linux kernel utilizes this swap space by copying chunks from your RAM to the swap, allowing active processes that require more memory than it is physically available to run.
Swappiness is the kernel parameter that defines how much (and how often) your Linux kernel will copy RAM contents to swap. This parameter's default value is “60” and it can take anything from “0” to “100”. The higher the value of the swappiness parameter, the more aggressively your kernel will swap.

Why change it?

The default value is an one-fit-all solution that can't possibly be equally efficient in all of the individual use cases, hardware specifications and user needs. Moreover, the swappiness of a system is a primary factor that determines the overall functionality and speed performance of an OS. That said, it is very important to understand how swappiness works and how the various configurations of this element could improve the operation of your system and thus your everyday usage experience.
As RAM memory is so much larger and cheaper than it used to be in the past, there are many users nowadays that have enough memory to almost never need to use the swap file. The obvious benefit that derives from this is that no system resources are ever occupied by the swapping process and that cached files are not moved back and forth from the RAM to the swap and vise versa for no reason.

How to change it?

The swappiness parameter value is stored in a simple configuration text file located in /proc/sys/vm and is named “swappiness”. If you navigate there through the file manager, you will be able to locate the file and open it to check your system's swappiness. You can also check it or change it through the terminal (which is faster) by typing the following command: “sudo sysctl vm.swappiness=10” or whatever else between “0” and “100” instead of the value “10” that I used. To ensure that the swappiness value was correctly changed to the desired one, you simply type: “cat /proc/sys/vm/swappiness” on the terminal again and the active value will be outputted.
This change has an immediate effect in your system's operation and thus no rebooting is required. In fact, rebooting will revert the swappiness back to its default value (60). If you have thoroughly tested your desired swapping value and you found that it works reliably, you can make the change permanent by navigating to /etc/sysctl.conf which is yet another text configuration file. You may open this as root (administrator) and add the following line on the bottom to determine the swappiness: vm.swappiness=”your desire value here”. Then, save the text file and you're done!

Factors for consideration

There are some maths involved in the swappiness that should be considered when changing your settings. The parameter value set to “60” means that your kernel will swap when RAM reaches 40% capacity. Setting it to “100” means that your kernel will try to swap everything. Setting it to 10 (like I did on this tutorial) means that swap will be used when RAM is 90% full, so if you have enough RAM memory, this could be a safe option that would easily improve the performance of your system.
Some users though want the full cake and that means that they set swapping to “1” or even “0”. “1” is the minimum possible “active swapping” setting while “0” means disable swapping completely and only revert to when RAM is completely filled. While these settings can still theoretically work, testing it in low-spec systems of 2GB RAM or less may cause freezes and make the OS completely unresponsive. Generally, finding out what the golden means between overall system performance and response latency requires quite some experimentation (as always).

Monday, July 2, 2018

Interpreting /proc/meminfo !!!

source


Interpreting /proc/meminfo and free output for Red Hat Enterprise Linux 5, 6 and 7

Environment

  • Red Hat Enterprise Linux (RHEL) 5
  • Red Hat Enterprise Linux (RHEL) 6
  • Red Hat Enterprise Linux (RHEL) 7

Issue

  • I need an interpretation of /proc/meminfo output.
  • I want to compare the output of free -k to cat /proc/meminfo.

Resolution

Comparing the output

  • free -k output (RHEL 5 and RHEL 6):
             total       used       free     shared    buffers     cached
Mem:       7778104    2971960    4806144          0     211756    1071092
-/+ buffers/cache:    1689112    6088992
Swap:      4194296          0    4194296
  • free -k output (RHEL 7):
              total        used        free      shared  buff/cache   available
Mem:        1012952      252740      158732       11108      601480      543584
Swap:       1048572        5380     1043192
  • Relevant fields from /proc/meminfo to match them against the output of free -k:
MemTotal:        7778104 kB
MemFree:         4806144 kB
Buffers:          211756 kB
Cached:          1071092 kB
SwapTotal:       4194296 kB
SwapFree:        4194296 kB
  • For RHEL 7 there is an additional field available, which is used instead of the calculation for -/+ buffers/cache line:
MemAvailable:     543584 kB

Matching output of free -k to /proc/meminfo

The following table shows how to get the free output matched to the /proc/meminfo fields.
free outputcoresponding /proc/meminfo fields
Mem: totalMemTotal
Mem: usedMemTotal - MemFree
Mem: freeMemFree
Mem: shared (can be ignored nowadays. It has no meaning.)N/A
Mem: buffersBuffers
Mem: cachedCached
-/+ buffers/cache: usedMemTotal - (MemFree + Buffers + Cached)
-/+ buffers/cache: freeMemFree + Buffers + Cached
Swap: totalSwapTotal
Swap: usedSwapTotal - SwapFree
Swap: freeSwapFree

Root Cause

  • Analyzing memory consumption

Diagnostic Steps

Most stuff is taken from the kernel documentation (Documentation/filesystems/proc.txt and Documentation/vm/hugetlbpage.txt)

High Level statistics

RHEL 5, RHEL 6 and RHEL 7
  • MemTotal: Total usable memory
  • MemFree: The amount of physical memory not used by the system
  • Buffers: Memory in buffer cache, so relatively temporary storage for raw disk blocks. This shouldn't get very large.
  • Cached: Memory in the pagecache (Diskcache and Shared Memory)
  • SwapCached: Memory that is present within main memory, but also in the swapfile. (If memory is needed this area does not need to be swapped out AGAIN because it is already in the swapfile. This saves I/O and increases performance if machine runs short on memory.)
RHEL 7 only
  • MemAvailable: An estimate of how much memory is available for starting new applications, without swapping.

Detailed Level statistics

RHEL 5, RHEL 6 and RHEL 7
  • Active: Memory that has been used more recently and usually not swapped out or reclaimed
  • Inactive: Memory that has not been used recently and can be swapped out or reclaimed
RHEL 6 and RHEL 7 only
  • Active(anon): Anonymous memory that has been used more recently and usually not swapped out
  • Inactive(anon): Anonymous memory that has not been used recently and can be swapped out
  • Active(file): Pagecache memory that has been used more recently and usually not reclaimed until needed
  • Inactive(file): Pagecache memory that can be reclaimed without huge performance impact
  • Unevictable: Unevictable pages can't be swapped out for a variety of reasons
  • Mlocked: Pages locked to memory using the mlock() system call. Mlocked pages are also Unevictable.

Memory statistics

RHEL 5, RHEL 6 and RHEL 7
  • SwapTotal: Total swap space available
  • SwapFree: The remaining swap space available
  • Dirty: Memory waiting to be written back to disk
  • Writeback: Memory which is actively being written back to disk
  • AnonPages: Non-file backed pages mapped into userspace page tables
  • Mapped: Files which have been mmaped, such as libraries
  • Slab: In-kernel data structures cache
  • PageTables: Amount of memory dedicated to the lowest level of page tables. This can increase to a high value if a lot of processes are attached to the same shared memory segment.
  • NFS_Unstable: NFS pages sent to the server, but not yet commited to the storage
  • Bounce: Memory used for block device bounce buffers
  • CommitLimit: Based on the overcommit ratio (vm.overcommit_ratio), this is the total amount of memory currently available to be allocated on the system. This limit is only adhered to if strict overcommit accounting is enabled (mode 2 in vm.overcommit_memory).
  • Committed_AS: The amount of memory presently allocated on the system. The committed memory is a sum of all of the memory which has been allocated by processes, even if it has not been "used" by them as of yet.
  • VmallocTotal: total size of vmalloc memory area
  • VmallocUsed: amount of vmalloc area which is used
  • VmallocChunk: largest contiguous block of vmalloc area which is free
  • HugePages_Total: Number of hugepages being allocated by the kernel (Defined with vm.nr_hugepages)
  • HugePages_Free: The number of hugepages not being allocated by a process
  • HugePages_Rsvd: The number of hugepages for which a commitment to allocate from the pool has been made, but no allocation has yet been made.
  • Hugepagesize: The size of a hugepage (usually 2MB on an Intel based system)
RHEL 6 and RHEL 7 only
  • Shmem: Total used shared memory (shared between several processes, thus including RAM disks, SYS-V-IPC and BSD like SHMEM)
  • SReclaimable: The part of the Slab that might be reclaimed (such as caches)
  • SUnreclaim: The part of the Slab that can't be reclaimed under memory pressure
  • KernelStack: The memory the kernel stack uses. This is not reclaimable.
  • WritebackTmp: Memory used by FUSE for temporary writeback buffers
  • HardwareCorrupted: The amount of RAM the kernel identified as corrupted / not working
  • AnonHugePages: Non-file backed huge pages mapped into userspace page tables
  • HugePages_Surp: The number of hugepages in the pool above the value in vm.nr_hugepages. The maximum number of surplus hugepages is controlled by vm.nr_overcommit_hugepages.
  • DirectMap4k: The amount of memory being mapped to standard 4k pages
  • DirectMap2M: The amount of memory being mapped to hugepages (usually 2MB in size)

Wednesday, June 27, 2018

How to Clear RAM Memory Cache, Buffer and Swap Space on Linux

Clear RAM Memory Cache, Buffer and Swap Space

source

Why use huge page?

In virtual memory management, kernel maintains table in which it has mapping of virtual memory address to physical address. For every page transaction, kernel needs to load related mapping. If you have small size pages then you need to load more numbers of pages resulting kernel to load more mapping tables. This decreases performance.
Using huge pages, means you will need fewer pages. This decreases number of mapping tables to load by kernel to great extent. This increases your kernel level performance which ultimately benefits your application.
In short, by enabling huge pages, system has fewer page tables to deal with and hence less overhead to access / maintain them!

How to Clear Cache in Linux?

Every Linux System has three options to clear cache without interrupting any processes or services.
1. Clear PageCache only.
# sync; echo 1 > /proc/sys/vm/drop_caches
2. Clear dentries and inodes.
# sync; echo 2 > /proc/sys/vm/drop_caches
3. Clear PageCache, dentries and inodes.
# sync; echo 3 > /proc/sys/vm/drop_caches 
Explanation of above command.
sync will flush the file system buffer. Command Separated by “;” run sequentially. The shell wait for each command to terminate before executing the next command in the sequence. As mentioned in kernel documentation, writing to drop_cache will clean cache without killing any application/service, command echo is doing the job of writing to file.
If you have to clear the disk cache, the first command is safest in enterprise and production as “...echo 1 > ….” will clear the PageCache only. It is not recommended to use third option above “...echo 3 >” in production until you know what you are doing, as it will clear PageCachedentries and inodes.
Is it a good idea to free Buffer and Cache in Linux that might be used by Linux Kernel?
When you are applying various settings and want to check, if it is actually implemented specially on I/O-extensive benchmark, then you may need to clear buffer cache. You can drop cache as explained above without rebooting the System i.e., no downtime required.
Linux is designed in such a way that it looks into disk cache before looking onto the disk. If it finds the resource in the cache, then the request doesn’t reach the disk. If we clean the cache, the disk cache will be less useful as the OS will look for the resource on the disk.
Moreover it will also slow the system for a few seconds while the cache is cleaned and every resource required by OS is loaded again in the disk-cache.
Now we will be creating a shell script to auto clear RAM cache daily at 2am via a cron scheduler task. Create a shell script clearcache.sh and add the following lines.
#!/bin/bash
# Note, we are using "echo 3", but it is not recommended in production instead use "echo 1"
echo "echo 3 > /proc/sys/vm/drop_caches"
Set execute permission on the clearcache.sh file.
# chmod 755 clearcache.sh
Now you may call the script whenever you required to clear ram cache.
Now set a cron to clear RAM cache everyday at 2am. Open crontab for editing.
# crontab -e
Append the below line, save and exit to run it at 2am daily.
0  2  *  *  *  /path/to/clearcache.sh
For more details on how to cron a job you may like to check our article on 11 Cron Scheduling Jobs.
Is it good idea to auto clear RAM cache on production server?
No! it is not. Think of a situation when you have scheduled the script to clear ram cache everyday at 2am. Everyday at 2am the script is executed and it flushes your RAM cache. One day for whatsoever reason, may be more than expected users are online on your website and seeking resource from your server.
At the same time scheduled script run and clears everything in cache. Now all the user are fetching data from disk. It will result in server crash and corrupt the database. So clear ram-cache only when required,and known your foot steps, else you are a Cargo Cult System Administrator.

How to Clear Swap Space in Linux?

If you want to clear Swap space, you may like to run the below command.
# swapoff -a && swapon -a
Also you may add above command to a cron script above, after understanding all the associated risk.
Now we will be combining both above commands into one single command to make a proper script to clear RAM Cache and Swap Space.
# echo 3 > /proc/sys/vm/drop_caches && swapoff -a && swapon -a && printf '\n%s\n' 'Ram-cache and Swap Cleared'
OR
$ su -c "echo 3 >'/proc/sys/vm/drop_caches' && swapoff -a && swapon -a && printf '\n%s\n' 'Ram-cache and Swap Cleared'" root
After testing both above command, we will run command “free -h” before and after running the script and will check cache.
In short :

FOR RAM : # sync; echo 3 > /proc/sys/vm/drop_caches

FOR SWAP : # swapoff -a && swapon -a